Aug 7, 2008

Gene transfer in bacterial arm races

The following videos are two short documentaries made by students in the MIT Graduate Program in Science Writing. Both films refer to a recent discovery of new antibiotics by scientists at the Massachusetts Institute of Technology and the University of Florida. But, please, don't say: "bah, another antibiotic discovering, so boring". What makes this an interesting story is not the particular antibiotics themselves (we'll see if they ever become useful), but the way they were discovered. Or should we say "created"?

It's been known for some time that the genomes of many microbes contain genes putatively coding for the production of many small molecules. Some of these molecules may have antibiotic, anticancer or other potentially useful activities. By looking at the genomic DNA sequence, scientists can often predict that such a microbe has the potential to produce specific metabolites, belonging to defined structural classes (polyketides, non-ribosomal peptides, glycosides, etc.). However, very often, the predicted metabolites are not detected when the microbe is cultured under standard laboratory conditions. Why is this? The usual explanation is that these molecules are only produced under specific circumstances that the microorganism faces in its natural environment.

ResearchBlogging.orgWith this idea in mind, the above mentioned researchers tried to find antibiotics in the cultures of a bacterium called Rhodococcus fascians (let's call it "Rhodo"). Rhodo belongs to a group of bacteria known as actinomycetes, which are well-known antibiotic producers and whose genomes are rich in information coding for the synthesis of potentially useful metabolites. The scientists cultured the microorganism under a variety of conditions: they tried both standard and unusual ones (starvation, sub-optimal temperatures or culture media, etc.). However, no antibiotic activity was ever detected.

So, they tried to "stress" Rhodo by adding another microbe in the same flasks: the name of the second partner was Streptomyces padanus ("Strepto", for short). Strepto produces a potent antibiotic (actinomycin) that kills bacteria such as Rhodo. So, what was the point? Rhodo died in all flasks, didn't it? Well, not in all of them. In one particular flask (out of hundreds), Rhodo not only survived but actually exterminated Strepto! The "Super-Rhodo" did this by producing a new antibiotic substance, never seen before. Moreover, Super-Rhodo was able to do this thanks to a piece of DNA that Rhodo stole from Strepto!

Both documentaries refer to the same story, but they use remarkably different styles. Please watch both of them, and post a comment if you want to share your thoughts (about them or about the story).

The first video is War in a Petri Dish, by Grace Chua, Allyson Collins, and Lissa Harris:



The second video is Shot in the Dark, by Andrew Moseman, Rachel VanCott, Megan Rulison, and Ashley Yeager:



There are some scientific aspects that may need some clarification. The initial idea was that Rhodo contained the genetic potential to make antibiotics, and the genes responsible for this were only "switched on" under certain unknown circumstances. This might be correct, but the mentioned results don't clearly validate it. When Rhodo faced a Strepto attack, it simply died. The only survivor (and now a killer itself), Super-Rhodo, had acquired genetic material from its enemy. This extra piece of DNA was essential for production of the new compounds. Although full details have yet to be published, it is not clear if the transferred DNA contained all, or some, of the genes coding for biosynthetic enzymes for antibiotic production. The new antibiotics are not related to actinomycin; however, it is possible that Strepto is able to produce them, in addition to actinomycin (again, under certain unknown circumstances...). Alternatively, the real effect of the extra DNA might be just regulatory, coding for some factor that induced the "switching on" of Rhodo's own genes. We'll wait for the answers to these doubts.

Scholar article:
K. Kurosawa, I. Ghiviriga, T.G. Sambandan, P.A. Lessard, J.E. Barbara, C. Rha, A.J. Sinskey (2008). Rhodostreptomycins, Antibiotics Biosynthesized Following Horizontal Gene Transfer from Streptomyces padanus to Rhodococcus fascians Journal of the American Chemical Society, 130 (4), 1126-1127 DOI: 10.1021/ja077821p

Related link:
Deadly mycelia: predatory streptomycetes. Twisted Bacteria (Jan. 15, 2008).

Blog Widget by LinkWithin
blog comments powered by Disqus

Creative Commons License Except where otherwise noted, blog posts by Cesar Sanchez in Twisted Bacteria are licensed under a Creative Commons Attribution 3.0 Unported License. Please let me know if any quotes or images on this blog are improperly credited. E-mail: TwistedBacteria AT gmail DOT com . Social media icons by Oliver Twardowski and AddThis.